

Settlers of Stepán

High-Level Design

Sarah Holtz, Kyle Hilbert, James Libbey, Aaron Dorrance, Jack Edwards

Table of Contents
1 Introduction 2

2 Problem Statement and Proposed Solution 3

3 System Requirements 4

4 System Block Diagram 4

4.1 Overall System: 4
4.2 Subsystem and Interface Requirements: 6

4.2.1 Raspberry Pi Data Storage 6
4.2.2 Raspberry Pi State Machine 6
4.2.3 WiFi Connection 7
4.2.4 I2C and Serial Wire/Cable Connections 7
4.2.5 Webpage GUI 7
4.2.6 Hexagon I/O Expanders 8
4.2.7 Push Button Input 8
4.2.8 Hexagon Display 8
4.2.9 LED Strip 8

4.3 Future Enhancement Requirements 9

5 High Level Design Decisions 9
5.1 GUI 9
5.2 Hexagon Tile 10
5.3 LED Strip 10
5.4 Raspberry Pi 10

6 Open Questions 11

7 Major Component Costs 11

8 Conclusions 11

1 Introduction
The Settlers of Catan is a popular board game that is known amongst a large portion of
the student population. In this game, players gather and trade resources to build a
colony on an island, competing to become the greatest civilization on the board.
However, the game board consists of many pieces which can be hard to keep track of
as well as tedious to set up every time a group wants to play a game. Furthermore,
people who have never played the game before may struggle with learning the rules

2

during their first run-through of the game. The goal of this project is to create a single
board with a customizable layout using individual cells that are linked together. In order
to interact with the board and play the game we will create a phone based user
interface. This will solve numerous challenges that occur with a traditional board as well
as make it easier for new players to learn the rules.

2 Problem Statement and Proposed
Solution
Although Settlers of Catan is iconic, it has a few notable pitfalls that make playing it
difficult. These problems include:

● Using the advanced setup is not friendly to newer players as one needs to have
a basic understanding of the rules in order to select good locations for their
starting settlements.

● It is far too common for players to forget when one of their numbers is rolled,
resulting in them missing out on resources.

● Mistakes due to misunderstanding the rules are not uncommon, such as
accidentally placing two settlements too close to each other, which can be
difficult to undo if not spotted immediately

● There are a lot of pieces that can easily be lost, which can make the game more
difficult to play.

Our solution involves creating an automated board that facilitates most game functions.
Here are some general blocks for the project:

● We will include an option upon setup for "quick start". With the traditional board
there is a "beginners' setup" intended to simplify the start of the game for new
players, this initial map is often forgotten. There will also be an option for more
experienced groups of players to customize the layout of the board.

● There will be a virtual dice rolling system.
● Resources will be automatically tracked, managed, and distributed. This includes

features such as "Longest Road" and "Largest Army".
● The board will display important player information such as tile resources, player

improvements, ports, etc.
● The board will be consolidated to fewer physical pieces.
● The consolidated nature of the board will allow for easier construction of roads,

settlements, and cities.
● The user interface will display development cards.
● We will include "Failsafes" in controls to prevent breaking of rules. This will make

things easier for new players with no prior knowledge of the rules.

3 System Requirements

3

● The system must run off of battery power. It will have to run off of the voltage and current
supplied by these for at least a few games’ worth of time--at least 12 hours.

● The primary logic and control mechanisms run on a Raspberry Pi, which must be
provided with power and I/O.

● The system must configure correctly and run the game upon the whole product being
powered up. There should be a minimum amount of steps for the end user to power up
the product, and minimal configuration should be required to connect to the Wi-Fi
network, select game parameters, and initialize gameplay. The Raspberry Pi should
rarely, if ever, need to be accessed to update or modify anything, and never in the
course of a typical game.

● The Raspberry Pi will create a LAN, providing access to it via its Wi-Fi radio. The game
program must allow players to connect to the wireless network, access the game
interface via a web browser, and transport data between the players’ devices and the
system. The signal must facilitate a good connection up to 20 feet away.

● The web-based portion of the player UI will be intuitive, responsive, and easy to use.
● The overall dimensions of the game board and container will be roughly hexagonal, with

each edge being no more than 25cm in length. The width and height must be adequate
to fit all of the electronic components, while not so large that the final product feels bulky
and unfriendly.

● The game must support up to 4 players--this many connections to the Wi-Fi network, this
many designations for player settlements and pieces on the board, this many sets of
game parameters used in the processing.

● The web-based portion of the user interface should not take away from the physical
game board itself, so that the design does not resemble an app or computer game more
than it does a physical game board. The hybrid of on-board information and
web-interface information must be carefully balanced to still make major improvements
on the current physical game, while not making it a largely web-based game, which
would be something else altogether.

● The system must be relatively light, allowing it to be moved around before, during, and
after gameplay. Similarly, the mechanical design will be robust and streamlined enough
that it will be easy and comfortable to carry, move, pick up, and store.

● The user must be able to interact physically with the board, both by indicating positions
on the board with buttons, and reading information conveyed by various displays. This is
still the main thrust of the game, where the web control/display interface is secondary.

4 System Block Diagram

4.1 Overall System:
A high level subsystem block diagram is shown below, which outlines the nine primary
subsystems in this project.

4

The basic functions of each subsystem follow:

5

● Raspberry Pi Data Storage:​ The Raspberry Pi shall contain a set of variables that
encode the game state and may be accessed by the state machine to determine the
appropriate outputs.

● Raspberry Pi State Machine:​ The Raspberry Pi shall control the entire system through a
state machine the inputs and outputs.

● WiFi Connection:​ The Raspberry Pi shall host a local webpage that can be accessed
from smartphones (or other devices) through a WiFi connection.

● I2C and Serial Wire/Cable Connections:​ The Raspberry Pi shall be connected to the
hexagons and LED strip through wires and cables that will carry I2C and serial
communications.

● Webpage GUI:​ There should be software that will use a GUI to take user input for more
complex actions and communicate game information to the players that is not conveyed
with the board itself.

● Hexagon I/O Expander:​ Individual chips will be used for each hexagon to delegate the
inputs and outputs of individual board spaces.

● Push Button Input:​ There will be push buttons on the board that allow players to select
specific "nodes" on the board as inputs during certain game actions.

● Hexagon Display:​ The hexagons will also display information on each tile, such as the
resource type and number on which it produces resources.

● LED Strip:​ There will be an addressable LED strip that will display the locations of
various "developments," such as settlements and roads.

4.2 Subsystem and Interface Requirements:

4.2.1 Raspberry Pi Data Storage

The data storage system within the Raspberry Pi must meet the following requirements:
● The data system must be completely encapsulated in software
● The data shall not exceed the memory requirements of the Raspberry Pi
● The state machine must have both read and write access to the data storage system
● The data system should virtually contain all of the information on the board, including:

○ The resource types and numbers of each tile
○ The location and owner of each settlement, city, and road
○ The location of the robber

● The data system should virtually contain the resources players control, including
development cards

4.2.2 Raspberry Pi State Machine
The state machine within the Raspberry Pi must meet the following requirements:

● The state machine must be completely encapsulated in software
● The state machine's script shall not exceed the memory requirements of the Raspberry

Pi
● The state machine must have read and write access to the data storage

6

● The state machine must be able to generate a local webpage
● The state machine must have access to the WiFi, I2C, and serial communications
● The state machine must have the following states:

○ Rolling dice
○ Moving the robber
○ Selecting game actions for turn (i.e. trade, build, pass turn)
○ Proposing trades
○ Accepting trades
○ Selecting development to purchase
○ Selecting location for developments

4.2.3 WiFi Connection
The WiFi connection must meet the following requirements:

● The connection must meet FCC requirements
● The connection must have a range of at least 10 feet
● The connection must be accessible from smart phones, tablets, and laptops
● The connection must support multiple devices at once

4.2.4 I2C and Serial Wire/Cable Connections
The I2C and serial connections must meet the following requirements:

● Connections to the hexagons must be capable of reading push button inputs to the
Raspberry Pi

● Connections to the hexagons must be capable of writing initial tile information (such as
resource type and number) to the hexagon processor

● Connections to the hexagons must be capable of writing when the robber moves
● Connections to the LEDs must be able to address the location and owner of new

developments (such as cities, settlements, and roads)

4.2.5 Webpage GUI
The webpage GUI should meet the following requirements:

● There should be separate GUIs for each player's device in order to distinguish which
player is using which device

● The GUI should be friendly to multiple types of devices, including smartphones, tablets,
and laptops

● Users should be able to input the following game actions:
○ Roll dice
○ "Maritime trade" with the bank
○ Propose trade to another player
○ Accept trade from another player
○ Build a development
○ Select a development type to build
○ Play a development card

7

○ Pass turn
● The GUI should display the following information for each player:

○ Number and type of resources owned
○ Development cards owned
○ Who possesses Longest Road and Largest Army
○ Running Victory Point total of player
○ Known Victory Point total of opponents
○ Explanation of mistakes or illegal moves that the player attempts

4.2.6 Hexagon I/O Expanders
The hexagon I/O expanders must contain enough I/O pins for the following interfaces:

● I2C communication with the Raspberry Pi
● Display of hexagon's resource type
● 7-segment LCD display
● Display of robber's presence
● Input from push buttons

4.2.7 Push Button Input
The push button input must allow players to select the following locations during associated
actions:

● A unique hexagon edge when performing the Build a Road action
● A unique hexagon corner when performing the Build a Settlement or Build a City action
● A unique tile when relocating the robber

4.2.8 Hexagon Display
The hexagon display must convey the following information:

● The resource type produced by the tile
● The number on which the tile will produce resources
● The presence or absence of the robber on the tile

4.2.9 LED Strip
The LED strip must meet the following requirements:

● The LED strip must be addressable so that individual LEDs may be illuminated with
different values

● The LED strip must be capable of displaying at least four distinct colors, one for each
player, plus an "off" state for edges and corners not controlled by any player

● The LED strip must be present at each edge and corner of the board that a player may
control

4.3 Future Enhancement Requirements

8

The following features are not necessary for the basic functionality of the game board, but may
be added to enhance the players' experience:

● A "scenario selection" that allows the players to select from a number of pre-generated
maps during game setup beyond the default

● A "customizable setup" that allows players to select the locations of their starting
settlements like in the original game

● Additional parameters for board generation (such as changing the arrangement of
numbers or tiles)

● There exist a number of house rules and rules variants that can be implemented to
customize the players' experience if development time allows, such as a "friendly robber"
rule that turns off the robber feature or a two-player variant that uses modified rules for
building developments.

5 High Level Design Decisions

Our overall project has 3 main subsystems that are all controlled by a Raspberry Pi. The
Raspberry Pi will be doing the majority of the processing for running the game, and each
subsystem contributes. Our 3 subsystems are the GUI, Hexagon Tiles, and LED Strip. They
will be described individually below for both their overall function and their connection to the
Raspberry Pi.

3 Subsystems to discuss:

5.1 GUI

The GUI will provide the interface to display information to the user and get most of the user
input. To make this GUI, the Pi will broadcast a LAN network which can be logged onto with any
internet connected device. The Pi will serve up a webpage to those connected to the LAN which
will be used to communicate with the player. The webpage will communicate information like
player resources, victory points, cards, etc. and can be used to get player input for things like
trading, resource management, and card actions.

We’re broadcasting a LAN network to tie the webpage to the board and to provide an easy way
to display a rich user interface. We decided on a webpage because it is much easier to display
information and interact with a webpage than with an LCD screen and a couple of buttons or
any other player input method.

9

5.2 Hexagon Tile

Even with the flexibility afforded by using a webpage for player interaction, there are still things
that are hard to display and interact with on a webpage. This is where the physical board and
hexagon tiles come in. The hexagon tiles will display information on the tile resource type, roll
needed to harvest resources from the tile, and the presence of the robber. We are displaying
this information on the board because we want a physical board that can be played around and
this is hard to communicate through a webpage without complicated graphics.

Road or settlement locations will also be selected through buttons on the hexagon tiles. The
tiles will each contain a button for each road or settlement location adjacent to it. This means
that roads will have two buttons each from the adjacent hexagon tiles and settlement locations
will have three. This is redundant but making the tiles like this means that we can make all the
tiles be the exact same which will make testing and manufacturing much easier and a little
redundancy never hurt anyone (except for my Uncle Gary who was actually banished from
America due to a lawsuit over a redundancy claim made against him).

5.3 LED Strip

The LED Strip is our third and final subsystem to discuss. The point of the LED Strip is to
illuminate, indicating a road, city, or settlement. The LED Strip will illuminate a different color for
each player, and there will be 2 colors for each player on the corners that will indicate a city vs.
settlement (think two shades of the same color or something along those lines). It will be
receiving power from the main Raspberry Pi device, which will be controlling our entire game.
That Raspberry Pi will contain the code, which determines which LED is illuminated when, so
the LED Strip’s sole purpose is to receive a serial input from the Raspberry Pi and illuminate the
correct LEDs accordingly.

5.4 Raspberry Pi
The Raspberry Pi is our main source of processing. This will be connected to each of the 3
subsystems for data communication. It will be transmitting serial data to the LED Strip in order
to communicate when a player has constructed a road, settlement, or city. It will be transmitting
I​2​C data to the Hexagon Tiles in order to communicate information about the tiles and to receive
information about building locations. Lastly, it will have a WiFi connection to the GUI, which will
be taking in the player inputs and outputting information to the players. Since this is our main
source of processing, it will be doing all of the calculations and processing necessary to run the
game, so that it can give and take info from the other subsystems.

10

6 Open Questions
There are still a few features of the project we will need to establish moving forward. These
features include:

● Powering the Board: The board will most likely be powered by batteries; however, the
type of batteries required depends on how much power the circuitry of the board ends up
using and how long the board should be able to run until dying.

● 3D Printing: The physical unit that will hold the board will be constructed using 3D
printing. Their actual design and method of physically linking together will need to be
decided, and access to a 3D printer still requires confirmation.

● Wiring for the Input Matrix: In order to reduce the number of pins and wires used, the
input buttons may be wired up in a matrix format. This method will need to be
researched further in order to be physically implemented as well as implemented in the
coding.

7 Major Component Costs

8 Conclusions
There are many tangible problems with the current physical board game that can be resolved by
an electronic game board. These problems include issues such as ease of setup, resource
tracking, and learning the rules. Implementing systems such as electronic board setup with

11

Item Quantity Unit Cost ($) Total Cost ($)

Hex PCB boards 19 2 38

7 segment displays 19 1.24 23.56

8 port I/O chips
(PCA9501)

19 1.77 44.20

16 pin PWM output
chips (PCA 9685)

19 1.91 36.29

LED strip 1 17.88 17.88

Basic circuit
components

(resistors, capacitors,
individual LEDs, etc.)

N/A 20 20

LEDs, resource tracking, and a phone based user interface will help to overcome these
problems. We intend to implement these solutions using a Raspberry Pi to control the logic of
multiple subsystems with the three main ones being a Graphical User Interface (GUI), each
individual hexagon tile, and the LED strip. Overall, by consolidating the pieces of the board and
automating many aspects of the gameplay we hope to make playing this game a more
enjoyable experience for both new and experienced players.

12

